Synthèse peptidique

Les réactions entre molécules polyfonctionnelles engendrent un grand nombre de produits si elles ne sont pas orientées.

Compétences scientifiques évaluées

- Extraire une information utile.
- Communiquer et argumenter en utilisant un vocabulaire scientifique adapté.

Étude de document

Stratégie dans la synthèse de peptides

Les peptides sont des polymères entrant dans la composition des protéines et obtenus par condensation d'acides α -aminés (Fig. 1). Lors de la condensation de deux acides α -aminés A1 et A2, une liaison peptidique se forme entre l'atome de carbone fonctionnel de A1 et l'atome d'azote fonctionnel de A2. L'équation de la réaction peut s'écrire :

$$\begin{array}{c} O \\ R_1 - C + O - H \\ \end{array} + \begin{array}{c} H + H + NH - R_2 \\ \end{array} \rightarrow \begin{array}{c} R_1 - C - NH - R_2 \\ \end{array} + \begin{array}{c} H - O - H \\ \end{array}$$

que l'on peut simplifier par :

$$A_1 + A_2 \rightarrow A_1 - A_2 + H_2O$$

La liaison peptidique est équivalente à une fonction amide.

La difficulté de la synthèse des peptides réside dans le caractère polyfonctionnel des acides α -aminés. La synthèse du

dipeptide noté A_1 – A_2 , par exemple, à partir d'un mélange des deux acides α -aminés notés A_1 et A_2 conduirait, sans aucune précaution, à un mélange de 4 dipeptides dont celui désiré. Le problème à résoudre par le chimiste pour n'obtenir que le dipeptide voulu est donc de construire une stratégie de synthèse (Fig. 2) mettant en jeu des étapes intermédiaires :

- par un jeu de blocages sélectifs, certaines fonctions des molécules réactives vont être temporairement protégées et rendues « inactives » ;
- les fonctions réactives non bloquées seront activées afin d'améliorer le rendement de la synthèse;
- une fois la synthèse terminée, les fonctions bloquées seront déprotégées.

Toutes ces étapes intermédiaires doivent avoir un rendement proche de 100 % pour ne pas altérer la qualité de la synthèse.

Formule générale	O H ₂ N — CH — C R OH	
Exemples	R = -H	glycine
	$R = -CH_3$	alanine
	R = -CH ₂ -CH -CH ₃ CH ₃	leucine

Fig. 1	Les acides	α-aminés.
--------	------------	-----------

Fonction	Protection	Déprotection	Activation
Amine R-NH ₂	blocage par le Boc (tertiobutoxycarbonyle)	déblocage par hydrolyse acide (acide trifluoroacétique)	
Acide carboxylique R–COOH	blocage par le méthanol	déblocage par hydrolyse acide	$parSOC\ell_2$

Fig. 2 Exemples de stratégies.

Pistes de réflexion

- **1 a.** Entourer et nommer les groupes d'atomes caractéristiques portés par un acide α-aminé.
- **b.** Pourquoi qualifie-t-on la molécule de polyfonctionnelle ? La formation de la liaison peptidique est une réaction entre un site accepteur et un site donneur de doublet d'électrons.
- **2** a. Sur la formule générale d'un acide α -aminé, préciser les positions de ces deux sites (on ne tient pas compte des fonctions du groupe R), en les justifiant.
- **b.** La condensation est-elle une réaction d'addition, d'élimination ou de substitution ? Justifier.
- Quelles sont les formules simplifiées des quatre dipeptides obtenus par réaction de A₁ et A₂ ?
- Le dipeptide Gly-Ala est obtenu par création d'une liaison peptidique entre la fonction acide carboxylique de la glycine et la fonction aminede (242) 3 ^È Avant création de cette seule liaison :

- **a.** Quelle fonction de la glycine doit-on protéger? Comment la protège-t-on?
- b. Mêmes questions pour |@a) 3 ^È
- **c.** D'après le texte, quelle opération supplémentaire doiton réaliser sur la molécule de glycine ?
- 5 Quelle(s) étape(s) finale(s) doit-on réaliser une fois la liaison peptidique formée ?

Pour conclure

6 Donner la formule du dipeptide Gly-Œe et établir l'organigramme de sa synthèse à partir de la glycine et de læ ∄ ^È

On pourra utiliser les notations R – NH₂ et R – COOH pour

les fonctions bloquées et R — COOH pour la fonction activée.